SOL: Segmentation with Overlapping Labels
نویسنده
چکیده
Image segmentation is a fundamental problem in Computer Vision which involves segmenting an image into two or more segments. These segments usually correspond to objects of interest in the image, i.e. liver, kidney’s etc. The classic approach to this problem segments the image into mutually exclusive segments. However, this approach is not well-suited when segmenting overlapping objects, e.g. cells, or when segmenting a single object into multiple parts that are not necessarily mutually exclusive. Moreover, we show that optimization methods for multi-part object segmentation with different priors/constraints may better avoid local minima in case of a relaxation allowing parts to overlap. We propose a novel segmentation model, i.e. Segmentation with Overlapping Labels (SOL), which allows for the objects’ multiple parts to overlap. This aids in overcoming the aforementioned issue of local minima with standard optimization approaches. We prove that SOL is an NP-hard problem, as well as introduce a novel move-making optimization framework to find an approximate solution to SOL. Our qualitative and quantitative results show that our proposed method outperforms state-of-the-art algorithms for multi-part segmentation.
منابع مشابه
A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملA Pyramid CNN for Dense-Leaves Segmentation
Automatic detection and segmentation of overlapping leaves in dense foliage can be a difficult task, particularly for leaves with strong textures and high occlusions. We present Dense-Leaves, an image dataset with ground truth segmentation labels that can be used to train and quantify algorithms for leaf segmentation in the wild. We also propose a pyramid convolutional neural network with multi...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018